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Abstract. A general system af-orthogonal polynomials is defined by means of its three-term
recurrence relation. This system encompasses many of the known familigpaynomials,

among them thg-analogue of the classical orthogonal polynomials. The asymptotic density of
zeros of the system is shown to be a simple and compact expression of the parameters which
characterize the asymptotic behaviour of the coefficients of the recurrence relation. This result is
applied to specific classes of polynomials known by the nagklahn, ¢-Kravchuk, ¢g-Racah,
g-Askey and Wilson, Al Salam—Carlitz and the celebrated little andgbigcobi.

1. Introduction

In the last decade there has been increasing interest in the so«alidtbgonal polynomials

(or basic orthogonal polynomials; for a review see [1-3]). The reason is not only of a purely
intrinsic nature but also because of the many applications in several areas of mathematics
(e.g. continued fractions, Eulerian series, theta functions, elliptic functions, etc; see for
instance [4, 5]) and physics (e.g. angular momentum [6, 7] anghétsalogue [8—11], the-
Schibdinger equation [12] ang-harmonic oscillators [13—-19]). Moreover, it is well known

that the connection between the representation theory of quantum algebras (Clebsch—Gordan
coefficients, 3 and 6 symbols) and the-orthogonal polynomials (see [20, 21, vol Ill, 22—

24]), and the important role that thegealgebras play in physical applications (see for
instance [26—31] and references therein).

However, the distribution of zeros of these polynomials remains practically unknown to
the best of our information. The present paper continues, corrects and considerably extends
the investigation of the asymptotic behaviour of zeros of ghgolynomials initiated by
Dehesa [32]. This is done by the consideration of a general systegipolynomials
which includes most of thg-polynomials encountered in the literature and the study of its
distribution density of zeros as well as the corresponding asymptotic limit.

The method of proof used is very straightforward; it is based on an explicit formula for
the moments-around-the-origin of the discrete density of zeros of a polynomial with a given
degree in terms of the coefficients of the three-term recurrence relation [37], as described in
lemma 1 below. This method was previously applied to normal ¢lopelynomials where
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recurrence coefficients are given by means of a rational function of degree [38], as well as
to corresponding Jacobi matrices [39] encountered in the quantum mechanical description
of some physical systems.

The paper is structured as follows. First, in section 2, a general sgtpofynomials
{P,(x),}_, are introduced by means of its three-term recurrence relation. Section 3 contains
the main results which refer to the discrete density of zeros (i.e. the number of zeros per
unit of zero interval) of the polynomiaP,(x),, n being a sufficiently large value, and to
its asymptotical limit (i.e. whem — o00). Both discrete and asymptotic densities of zeros
are supposed to be characterized by the knowledge of all their moments. These results are
given in the form of four theorems. Theorem 1 gives the behaviour of the moments of the
discrete density of zeros in terms of the parameters defining the recurrence relation. The
asymptotic density of zeros is given by theorems 2—4 in a similar way.

Proofs and a detailed discussion of these theorems are contained in sections 4 and
5 respectively. The utmost effort has been concentrated on searching for an appropriate
asymptotic density of zeros to obtain as much information as possible about the asymptotic
distribution of zeros of the new polynomials. Finally, section 6 contains applications of
theorems 1-4 formulated in section 3 to several known familieg-pblynomials.

2. The general system ofj-orthogonal polynomials

The general system af-orthogonal polynomialg P, (x),}"_, is defined by the recurrence
relation

Py(x) = (x — @) Py1(x) — bZ_1 Py_2(x)

P_1(x)=0 Py(x) =1 n>1 @
with the coefficientss, andb?_; given by
_ Yoo s g apum
T T o A g 0 (2)

p2 _ Lmo(iZo 6" nn g (pemy?
B D O B A VR C

wheregq is an arbitrary positive real number bigger than 1. Further, the following general
requirements on the real parameters definipgind b2 will be assumed.

(1) All members of the sequendg™; 0 < i < h,}4_y, {y"; 0<i < 1,)5_, do not
vanish simultaneously. S, andb? not to be infinite for allz is assured.

(2) The parameter$s,"”; 0 < i < k,}B_, and {y,";0 < i < 1,}5_, are such that
b2 > 0 for n > 1. Then Favard's theorem assures the orthogonality of the polynomials
{Pn(x)q},ll\]:o-

(3) The following inequalities are verified:

g > gl > s gt GO > g > > g

g >qlt>->q"  ¢P gt > ©
and

g0>81> > g&nm ho>h1>---> hy @)

ko> k1> - >k, lo>l1>--->1,

Conditions (3) and (4) do not obviously imply any loss of generality. Here it should also
be pointed out that the polynomials discussed in [32] are instances of the polynomials (1),
(2) corresponding to the values, = k,, = h,, = e¢,, = 1,, = s,, = 0 for all m.
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3. Main results

Before collecting the main results of this work, let us describe lemma 1 which is the basic
tool to find them.

Lemma 1.Let {Py(x)} be a system of polynomialBy (x) defined by the recurrence relation
(1), which is characterized by the sequences of numpggisand {b,}. Let the quantities

b
uo=N ,u;,SN)—/ x" oy (x) dx m=12,...,N (5)

be the non-normalized-to-unity spectral moments of the polynomiais), i.e. the moments
around the origin of the discrete density of zepggx), defined by

N
pn(x) =D 8(x —xy.) (6)
i=1

{xyi,i =1,2,..., N} being the zeros of that polynomial. It is fulfilled that

2 2r 2r; r
N = F(ry a1t ) Za’lb 1 :ilbl 2 b el 7
(m)
form=12...,N. The summatiorE(m) runs over all partitiongry, 1, ...,r;H) of the
numberm such that A
(1) R+ 2R = m, whereR and R’ denote the sumg = Y/_, , and byR' = Y/,

or
j-1 j
Zri’+22r,~=m (8)
i=1 i=1
(2 ifry=0,1<s < j, thenr, =r, =0 for eachk > s and
(3)j =1 or j =" for m even or odd respectively.
The factorial coefficientd are defined by
(rp+ri = DI[ A (ima+ 1) + 10 — D!
1 ’ ’ A i
Flryrirg, orpoq,rpoary) =m rilry! 111 (rica — Dlritr!!
rp—1+r, — D!
u (9)
(rp—1 = Dlry!

with the convention = r, = 1. For the evaluation of these coefficients, we must take
into account the following convention

F(ry,r1,rp,12. p 1:0,00 = F(ry,r, 15,12 ..., ”;71)~
In (7), t denotes the number of non-vanlshmgNhich are involved in each partition af.

This lemma was initially found in a context of Jacobi matrices [37,38]. Just to
understand the practical use of the lemma, let us give the first three spectral moments

=

N
=3
i=1
N
wo=Y al+2 b7 (10)
i=1 i
N
2

a’+3 bl-z(ai + aiy1).



6746 R Alvarez-Nodarse et al

In the following, the main results of this work are collected in the form of four theorems.
The first of them refers to the discrete density of zeros (6) of the polynomials defined by
(1), (2) and the other three are concerned with the asymptotic density of zeros, i.e. when
the degree of the polynomial tends towards infinity. Throughout the paper the symbol
meansbehaves as

Theorem 1let Py(x),, very largeN, be a polynomial defined by the expressions (1)-
(4). The moments{u/M;m = 1,2,..., N} of the non-normalized density of zeros
on(x) = Zf’:la(x — xy,;) of the polynomialPy (x), have the following behaviour

Q) If dog—eo = %(fo —so) = 0, three cases occur.

(@) If go — ho > %(ko — lp), then

a(O) "
I’L:1(1N) ’3((10) N(go—ho)m-kl' (11)
(b) If go— ho = 3(ko — lp), then
(O) : 9(50) ’ 1 (ko—1, 1
)~ ZF(’l’rl"“”fH) o | | o | VR (12)
(m) ,8 Yo

(C) If g0 — ho < %(ko —1lp), then

N 9(50) : 3 (ko—1, 1
/’L;S, )~ W NQ( o—loym+ ) (13)
0

(2) If do — eg # 0 and/or fy — s¢ # 0, two cases occur.
(@) (i) If do — ep < 0 and fo — so < 0 in such a way tha®2; # 0, then

’ , R R
oo Febrero [ T[] 00 (0
W . Y | | | &L 9
g =(ng)M | gl yO | de)f \1—¢™

(m)

where ¢ dQM denotes theW derivative with respect t;.
(II) If dg—eg=0 andfo —s0<0 andgo —ho=ko—1g=0, then
N a R
Wi~ F(r, 0., 07,0 [ % | N (15)
(m) Bo
(III) If do—ep <0 andfo —s50=0 andgo —hog=ko—1p=0, then
9(0> R
i~ FO,r1, .1, 00| D5 | N (16)
(m) Yo

(b) If dy — eg > 0 and/or fy — 5o > 0, three different subcases may occur, namely:
(i) do — eo > 3(fo — s0), then

(0) m qm(N+1>(do—eo)
(N 4 " ar(go—ho)m
My ’3(0) qm(dO*eo) 1 N . (17)

(i) If do—eg = %(fo — 5p), then three different types still come up.
(A) If go—ho > 3(ko — o), then

. a(()) n qm(N+1)(d07eo) ot
/ ~ 4 aj(go—ho)m
Mo ,BéO) qm(do—eo) -1 N : (18)
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(B) If go —ho = 3 (ko — lo), then

OTR T 0 TR  ptm(N+1-1)(do—eo)
o 2] q 2 0—¢€o
"(N) ’ / 0 0 m(go—ho)
p ~ Y F ) [ <o>} |: (0)] gmdo—eo) — 1 N ' (19)
(m) 0 Yo

(C) If go— ho < 3(ko — lo), then

B 6@ ki (do—eo)mN

wy | % 4q 1 (ko—loym
m ]/(;O) qdo—eoym ]_N2 ) (20)

(i) do —eq < %(fo — s0), then

P I
m ]/0(0) q%(fofso)m ~1

N 2fo—som (21)

The summation)_,, and the parameter are as defined in lemma 1. Besides, the
parameter$2;, Q, and M are as follows:

1
Q= |:(do —eg) — é(fo - So)] R + %(fo — 50) (22)
J Jj—1
Q2 = (do — eg) Z krii1+ 2(fo — so) Z kriq1 (23)
=1 =1
1 , m
M= [(80 — ho) — é(ko - lo)] R + E(ko —lo). (24)

The proof of this theorem is shown in section 4.

Theorem 2Let Py(x), be a polynomial defined as in theorem 1 with the additional
condition (do — e0) = 3(fo — so) = O (i.e. case 1).

Let p(x), p7(x) and p;(x) be the asymptotic (i.e. wheN — oo) densities of zeros of
the polynomialPy (x), defined by

p(x) = lim py(x)
N—oo
1 X
ook
o0 = Jim Sow () 25)

‘o= fim S
P20 = e NPY \ VTt

and their corresponding moments are as follows:

o = i1
. O
(D) = M oo (26)
(N)
T
Hn@ = 1M NGy
form =0,1,2, ..., respectively. herey(x) denotes the (discrete) density of zeros of the
polynomial Py (x),. It turns out that

and
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(1) if go— ho > (ko — lo), then
(0) m
o
(D) = [‘30)} m
Bo
(2) if go— ho = (ko — lo), then

2O T1% T 7"
P @ =3 Fopr. )| o | | m

(m) /30 Yo
(3) if go — ho < L(ko — lo), then
2

0© 7
wn(2) = % m = 0.
Y0

WV
o

>0

(28)

(29)

(30)

Here the coefficients” and the symbol of summatiop,,, are as in theorem 1.

Theorem 3Let Py(x), be a polynomial defined as in theorem 1 with the additional

condition(dg — eg) <0 and%(fo —50) < 0 (i.e. case 2a).

Let p(x) and p1(x) be the asymptotic densities of zeros of the polynonfalx),

defined by
1
= lim = lim —
p(x) = lim poy(x) p1(x) = Iim NpN(x)
and their corresponding moments are as follows:
v M/(N)
/A H / / I H m
Hom = Nlinoo Hom o (1) = Nlinoo N

for m > 0, respectively. It turns out that:
(1) If dg—eg < 0 and fy — sg < 0 in such a way tha®2; # 0, then

, R R
oy P [T o
m q792(|n q)M (()O) yéO) dQlM 1— qu

(m)
and

uo() =1 w,(H)=0 m > 1
(2) If dg —eg =0 and fo —so < 0 andgg — hg = ko — Ip = 0, then
W, = 00 m>=0
1 m=0

o1
’ 00}
> F(r1.0....,0.7],y) [5«»} m> 1.

(m) 0
(3) If do—Eo<0andfo—S():Oandgo—hozko—lozo, then
W, = 00 m>0
1 m=0

6© R
> F(0.r1,0,....7;.0) % m > 1.
(m) Yo

w, (1) =

o, (1) =

2

(31)

(32)

(33)

(34)

(35)

(36)

37)

(38)

Here the coefficientg” and the symbol of summatioE(m) and the parametef2;, Q, and

M are as in theorem 1.
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Theorem 4Let Py(x), be a polynomial defined as in theorem 1 with the additional
condition(dg — eg) > 0 and/or%(fo —s0) > 0 (i.e. case 2b).

Let p(x), pi*(x), p3*(x), P3*(x), p; " (x), p; " (x) and p3 " (x) be the asymptotic
densities of zeros of the polynomi&ly (x), given by

px) = ngnoo o (x) (39)

—(do—eo) N
sk L xXq
pr(0) = lim. pN( N (go—ho) )

. i xq—(do—eo)N
= lim —_—
P73 (x) N_)QQPN( N 1o ) (40)

—3(fo—s0N
. xq 2V
2(x) = lim -
P3 ) N—>oopN< N%(ko*lo)

] (m) xq—(do—eo—l)N
py T (x) = lim T pn

N—oo (mN), N (go—ho)
] (m) xqf(dofegfl)N
++ = | q
pz (x) = lm N, PN E (41)

1
) (m) xq—g(fo—‘Yo—Z)N
p3 (x) = lim T py 1
N—oo (mN)q Né(ko_lo)

and their corresponding moments are as follows:

o = lim (42)
N—o00
) M/(N)
k% — m
Fom 1) = 1\!1“00 N(go—ho)q(do—eo)'nN
M/(N)
(2 = lim m
Hom @) N—o0 N%(kO*lo)q(dofeo)mN (43)
. W
*(3) = lim m
Hom ( ) N—o00 N%(ko—lo)q%(fo—.xo)mN
. m /(N)
I‘LrJrrz+(1) — lim ( )q Ko
N—00 (mN)q N(go—ho)q(do—eo—l)mN
. (m) /(N)
i@ = lim T (42)
N—o0 (mN)q Né(koflo)q(dofeofl)mlv
. m /(N)
W@ = lim e
N—oo (mN)y N 2ko—lo) g3 (fo=so=2mN
for m > 0O, respectively, and where symb@l), denotes the-basic number
9" —1
(n)g = ~1 (45)

related with thez-numbers £], = % by formula(n), = q%[n]q%. It turns out that

W, = 00 m>=0 (46)

and
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(1) do — eo > 3(fo— s0), then

00 m=20
(1) = ac(,o) " q"(do—eo) (47)
BO | g —1 m > 1.
Also,
1 m=20
wr =9, e (48)
(" — D, () m > 1.

2) If dg—eo = %(fo — s0), then three different situations arise.

(@) If go—ho > %(ko—lo). Then the momentg*(1) and /(1) have the same values
as in the previous case, i.e. as formulae (47), (48).

(b) If go — ho = 3(ko — lo), then

00 m=20
R R
P (1) = o o0 7" gQetm-nido—co) (49)
F(ri,r]_,...,r{ 1)[0 0 T odo—ey 1 m}l.
(%): jt+ 1360) )/0(0) g"do—eo) — 1
Also,
1 m =
++
P D=1, - (50)
{ (¢" — D, (D m> 1.
(C) If g0 — ho < %(ko — lp), then
(0,] m —= 0
wi@=1re®7* 1 (51)
TO) (do—eo)m __ 1 m 2 1.
Yo q
Also
1 =0
wir@=1 " (52)
@™ — Du, (2 m > 1.
(3) do — eo < 5(fo — s0), then
(0, ] m —= 0
ni@=1le07? 1 (53)
0 7;(/{ Zsom m = 1.
Yo g2t/omom —1
Also,
1 m = O
wat@ =1, ” (54)
@™ = Dp, (3 m > 1.

Here the coefficientg” and the symbol of summatiop,,, and the parametetgs, Q2
and M are as in theorem 1.
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It is important to make the following observation. To get as much information as
possible about the asymptotic distribution of zeros when the mom¢ntd the conventional
asymptotic density of zerog(x) = limy_ o py(x) diverge, a normalization factap is
often used in theorems 2, 3 and 4, i.e. it is usually defined as an asymptotic density of zeros
of the form

fx) = Nlim Cpn(Dx) (55)
where the factor€ and D are chosen so that the momepts of f(x) given by
pm = lim € D" (56)

are finite [40]. This is the great advantage of the densities(af type. The scaling factor
D turns out to be a function af and/org”. A detailed analysis of this procedure is carried
out in section 5.

4. Determining the discrete density of zeros
Here theorem 1 will be proved. Let us consider the polynomia(x),, N being a very
large number, defined by the expressions (1)—(4), i.e. that

Py(x) = (x — an) Py-1(x) = bf_; Py—2(x) (57)

whereay andb? are the values of,, andb? given by equation (2) for = N. First, let
us find what are thev-dominant terms in the expressions (2) for andb3_,. Replacing
n by N in equation (2) and taking into account that

A 8m 80
(m) argm—i \ ,duN (0) n7go—i | ,doN 0 doN
D (e (Y aON ) g g
i=0

m=0 i=0 (58)
A B ho
Z (Z IBi(m)Nh,,,i>qemN ~ (Z‘Bi(o)Nhoi>qeoN ~ IB(()O)NhoqeoN
m=0 \ i=0 i=0
it is easy to obtain that
aéO) go—ho , (eo—do) N
ay ~ @N q (59)
and, in a similar way, it is easy to obtain that
6© .
b12V ~ %Nko—loq(fo—m)i\" (60)

Yo
The symbol~ means, as already pointed olighaves withN as. To get (58) the
conditions (3) and (4) have been used. Remark that, taking into account equations (59),
(60), equation (2) may be written as

©)

%o — ~d ~ho—1_ (eo—d
a, = ﬁ(o)n(go 1o)q(60 on 4 O(nso~ho q(eo to)ll)
9?0) (61)
b’% — yO(O) n(ko—lo)q(fo—-ﬁ'o)ﬂ + O(nko—lo—lq(fo—-ﬁ'o)n)
0

for n > 1. To calculate the discrete density of zeys(x) of the polynomial Py (x),, it
may first be assumed to be characterized by the knowledge of all its moipefits m =
0,1,2,..., N} defined by (5).
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Taking the values (61) af, andb? into equation (7), we obtain fqu/™) the following
values:

aéO) R eéO) R

N

,U/:,,(l)NZF(V:/'_,V]_,...,}"]‘,F]{_‘_]_) w
Y

(V]
() Bo 0
N—trj-1
% Z |:l_[(l + k)(go—ho)r;i+1+(ko—lo)fk+1:| (i + j)(go—ho)r_,quQzHQl. (62)
i=1 L k=0

If we take into equation (62) the dominant term then it reduces as follows

29

¢ K 6 R Ny
N Q M i
/f%(l )NZF(ri,rl,...,rj,rJfH) —0 W q ZZZ qz 1 (63)

(m) 0 0 i=1
with the following notations

J i1
R= E r; R = E r
i—1 i=1

and
Q1= (do—e0)R' + (fo—so)R

J j—1
Qo = (do — eo) Z kri 1+ 2(fo — so) Z kriq1 (64)
k=1 k=1

M = (go — ho)R' + (ko — lp)R.

It should be noted that, because of relation 8}4-2R = m and consequently the parameters
Q; and M may be written in the form

1
Q= [(do —ep) — é(fo - So)] R + %(fo ) (65)

1
M= [(go — ho) — é(ko - lo)] R + %(ko —lp) (66)

which are the expressions (22) and (24) given in the previous section.
To go further the summation has to be performed in equation (63). In doing that two
cases appear when expression (65)29fis analysed:

(1)do—eo= 2(fo—s0) =0

(2) do — eg # 0 and/or(fo — so) # 0.

Let us see how equation (63) gets simplified in each case.
Casel dog—eg= %(fo —850) = 0.

In this caseR2; = Q, = 0 and since

N—t
ZiM ~ (N — p)M+1 N> 1
i=1

Equation (63) reduces as follows

2@ 1% [0 1"

uﬁ,(lN) ~ ZF(ri,rl,...,rj,rj{H) |:?0):| |:O(0)j| NMHL (67)
(m) Bo Y0

To further simplify this expression, we examine equation (66WAf it is easy to find

three different subcases correspondinggo- ig > %(ko —1y), go — ho = %(ko —Ilp) and

go—ho < %(ko — lp), respectively. Let us study what happens for each subcase.
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(1) (8) go — ho > (ko — lp). Note that

1
= [(go — ho) — é(ko - lo)} R + %(ko —lp).

positive

Then the dominant term is obtained whé&" = m and R = 0, i.e. for the partition
(m, 0,0, ...,0). ThereforeM = (go — ho)m and expression (67) reduces as follows

o "
W Z F(m,0,0,...,0) |:,3(0)j| N Go—hom+1
(m)

Since F(m, 0,0, ...,0) = 1 according to (9), it is clear that this relation is expression
(11) of theorem 1.

(b) go — ho = 3(ko — lo). ThenM = 4 (ko — lo) and (67) takes the form

R R
0[(0) 6(0)
/(N) / - 0 0 2 (ko—lo)+1
Hom ZF(rl’rl"“’rJ’er) O © | NPT

(m) 0 0
This expression coincides with (12) given in theorem 1.
(c) go — ho < 3(ko — lo). Note that

1
= [(go — ho) — é(ko - lo)} R + g(ko —lp).

negative

Then the dominant term is obtained wheR 2 m and R’ = 0, i.e. for the partition
(0,m,0,...,0). ThereforeM = (ko — lp) and

05" i
(N L(ko—lo)+1
w > F(©0.m.0.0,... 0)[)/(0) N 3ko—lo

(m)
which is the expression (13) given in theorem 1, sidg®, m, 0,0, ...,0) = 1.

Case 2 dg — e # 0 and/or}(fo — so) # 0.
Here we are obliged to perform thiesummation of (63). We have

Z M 191_ (Inq)MZ QMq

N
1 daM lqul
(In q)M dQM
1 qszl _ gt
(Ing)M de¥! 1— g™

Depending on whether® is smaller or bigger than unity, this summation hag behaviour
or another, indeed,

£ Q
ERI R L g™ <1
—qu(N_Hl) if g% > 1.

Q2

(68)
Then

N— M Q
. 1 d q .
M lQl ~ Q1
E i"q (ng) de |:1_q91i| if g <1 (69)

i=1
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and
N—t

M _iQ ‘191(N_t+1) M £ Q

i=

Therefore, from (68) it is clear that to further reduce the expression (63) of the quantities
wN) we have necessarily to distinguish the following two subcagés:< 1 (i.e.Q; < 0)
for all partitions ofm andg® > 1 (i.e. Q1 > 0) for at least one partition ofi. Taking into
account (65), these two subcases occur provided that

(l) (a)do —e <0 andfo —s50<0

(b)do—€o=0 andfo—So <0

(C)d0—€0< Oandfo—S():O

(2) do—eg>0 and/orfo —s50>0
respectively. Let us see how the moments” given by (63) simplify in these two cases
separately.

(a) Case 2a:

(i) do — eo < 0 and fy — s < 0 in such a way thaf2; # 0. The replacement of the
summation given by (69) in (63) leads to

/ / ©7% 07k
M,(N)NZF(rlvrl7---vrj+l) Qg 90 dM ( qu >
m —
&5 a2ng™ | g0 v | deif \1-g¢™

which is expression (14) of theorem 1.
(II) do—ep=0 andfo —s50<0 andgo —hg=ko—1p=0. Since

1
M = |:(go—ho) - 2(ko—lo)] R + %(ko —1lp) =0

then

N—t N—t Q1(N—1)

. . 1-— g
M _iQ iQ _

I e
i—1 i—1 1-g%
where Q2; = (fo — so)R (see (64)). ForN > 1 it is clear from the last expression that
thei summation is a decreasing and convex upward function, which has a maximum when
Q1 =0, i.e.whenkR = 0andR’ = m and it is equal taV. This corresponds to all partitions
(r1,0,...,0,r;,,). Note that (see (64))

J j-1
Q2= (do—e0) ) kriyg+2(fo—s0) ) kriy1 =0.
=0 ; ; =0
Then (63) reduces as follows

Rk
[07
’u;r(lN) ~ ZF(ri, 0,...,0, rjf+1) |:(()0):| N

) Bo

which coincides with expression (15) of theorem 1.
(i) dg—eq < 0 andfo—so=0andgg—ho = kg—Ip = 0. HereQ2; = (dg—eo)R’ < 0.
Then, as in the previous case, we have the conditions

Q=0 Q=0 i summation= N

and (63) reduces as expression (16) of theorem 1.
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(b) Case 2bdy — ¢g > 0 and/or fy — sg > 0. Here from (70) and (63) one gets

O M, 7% ara-ne

6 2 -

HN) / - ) 0 q iQIN AT M

Fom ZF(’l’rl"“”J’er)|:ﬂ<0)} |: (0>i| gu—1 1 SN (71)
(m) 0 Yo

To go further in the analysis of thé dependence qi/"’) one has to analyse expression (65)
which defines2;. A simple study allows us to distinguish the following three situations:

(i) do — eo > 3(fo— s0)

(i) do — eo = 3(fo — 50)

(iii) do —eo < 3(fo— s0).

Now we shall examine the reduction of (71) in these situations.

() do—eq > %(fo —sp). From (65) and (71) one easily finds that the dominant term in
the m summation correspond to that for whiét = m, because

1 ,om
Q= [(do —eo) — é(fo - So)] R + i(fo — 50).

positive
Then R = 0, Q1 = m(dp — e0), M = (go — ho), the corresponding partition is
(m,0,...,0) and then®2, = 0 andr = 0. Therefore

Q7" grNDo—er) .
M;;SN) ~ Z F@m,0,0,...,0 |:(()0):| m}\/(xo hoym
m Bo q

SinceF(m,0,0,...,0) =1 according to (9) this relation is expression (17) of theorem 1.

(i) do — eg = %(fo — s0). Here we have; = %(fo — 50) = (dop — eg)m, that is a
fixed number for all partitions ofz. Then, in expression (71) we are obliged to study
the parameteM given by (66) to know thev-dominant term of then summation. The
analysis of expression (66) leads us to separate the following three possibilities:

(A) go— ho > (ko — lo)

(B) g0 — ho = 5(ko — lo)

(C) go — ho < 3(ko — lo).

For the case — ho > %(ko — lp) the dominant term is the one corresponding to the
condition whenN™ is maximum. It occurs wheR’ = m, R = 0 because

1
M = [(go — ho) — é(ko - lo)} R + %(ko —lp).

positive
It corresponds to the partitioGmn, O, ..., 0), for which F(m,0,0,...,0) = 1, + = 0,
Q, =0, M = (go — ho)m. Then, equation (71) reduces as

© " m(N+1)(do—
W) [“0 } g" PR oo

m ’3(()0) qm(dofeo) -1

which coincides with equation (18) of theorem 1.

For the caseyy — ho = %(ko — lp) it turns out thatM = (go — ho)m, Q21 = (do — eg)
and expression (71) easily transforms into (19) of theorem 1.

For the caseo—ho < %(ko—lo) we have, as befor&; = (dg —eg)m and the dominant
term is the one corresponding to the partiti@m, O, ..., 0). It is because

1 , m
M= |:(go — ho) — é(ko - lo)] R + E(ko —ly).

negative
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Then, the maximum ofN™ occurs forR" = 0, R = 2. Thereforer = 1, Q» = 0,

2
M = L(ko —lo) and (71) reduces as

50) 7 q (do—eo)mN .
(N 3 (ko—lo)m
TN F@O,m,0,...,0 —y(o) e — 1Nz

0

which is expression (20) of theorem 1 sing¢0, m, 0, ...,0) = 1.
(III) do —eg < %(fo — 50)- Since

1 , m
M = [(go—ho) - 2(ko—lo)] R + E(ko—lo)

negative

then the dominant term in the summation of expression (71) is the one corresponding to
the partition(0, m, 0, ...,0). ThereforeR" =0, R = 7,1t =1, Q2 =0, M = %(ko —lp)
and

0 12 L (fo—soymN
up ~ FO,m,0,....0 | 5 AET T NiGemsom
Yo q*z(fO*So)m -1
which coincides with (21) sinc&'(0,m, 0, ...,0) = 1.
This completely proves theorem 1. O

As a conclusion to this section we provide a scheme with all the different possibilities
obtained in this section.

Scheme The characterization of generglpolynomials by its spectral properties.
)
(a) go— ho > (ko — lo)
do — eo = 3(fo—0) § (b) go — ho = 3(ko — lo)
(¢) go— ho < 3(ko — lo)

)
d0—€o<0
] Q 0
@) :fo—So<0 17
do—eo<0| —|dy—ep=0
(a) (i) go—ho=ko—1lo=0
fo—s0 <0 fo—s0<0
dg — 0
do— e #0 (iii) {fo e°<0 20 —ho=ko—1lo=0
e =
fo—s50#0 °
(i) do — eo > 3(fo — o)
do —eo >0 (A) go — ho > 3(ko — lo)
(b) and/or (ii) do— eo = 5(fo—s0) § (B) go—ho = 5(ko — lo)
fo—s0>0 (C) go— ho < 3(ko — o)
(iii) do— eo < 3(fo— s0)
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5. Searching for a normalized density of zeros

In this section the asymptotic distribution of zeros of the polynonfialx), defined by
equations (1)—(4) will be discussed. In particular theorems 2—4 will be proved. The starting
point will be theorem 1.

From theorem 1, we observe that the momerjf&’ of the (non-normalized) density of
zerospy (x) depends orV as follows:

Nem+L in case 1

Constant in subcase 2ai

N in subcases 2aii—2aiii (72)
NamgbmN in case 2b

where the constants and b are known and distinct for each case. Obviously we would
like to have a normalized density of zerp™(x). The usual way to have it is to impose
that themoment of order zerbe equal to unity, which allows us to write

1
PR() = o (x) (73)

whose momentg/‘") will be related to those opy (x) by

1
N = NM;;N) m > 0. (74)
Then, from (72) and (74) it is clear that thedependence of the moments of themalized-
to-unity density of zeros is given by

N in case 1

N7t in subcase 2ai (75)
Constant in subcases 2aii—2aiii

Nam=1gbmN in case 2b

As said before, we are interested in the asymptotic density of zeros. If this is defined by
px) = Nliﬂoo on (x) (76)

then taking into account that ) have aN dependence of the form (72), its momepts
given by
w, = lim /N

N—o00

will be infinity in case 1, subcases 2aii and 2aiii and in case 2b; and constant given by
(14) in subcase 2ai. Therefore, the expressions (27), (33), (35), (37) of theorems 2—4,
respectively, have been proved.

If some information is required about the asymptotic distribution of zeros in case 1,
subcases 2aii and 2aiii and in case 2b, a normalization factor and/or a scaling factor needs
to be introduced into the densipyy (x) in the sense discussed in equations (55) and (56).
Let us first think of ascaleddensity. For case 1 there is no scaling facdibmwhich leads
to an asymptotic density of zeros whose moments have non-zero finite values unless the
scaling factor be of the fornD = N—“~» but this is not useful since it would need a
definition of a differentscaled asymptotic density function for each moment. Contrary to
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this, for case 2b we can consider the scaling fadoe N~%¢g~"" and define the discrete
density of zeros given by

*x _ X
PN (x) = pwn <quN“>

and the asymptotic density of zeros given by

*3k _ H x
p(x) = ]\!lnoo PN (quN”> (77)
when momentg.* are according to (56), as follows

/(N)

m
% m
Hm = Nlinoo qmbNNam :

(78)
From (72) and (78), it is clear that all the quantitieg® have finite values. The only
omission is the value of parametersandb for the different subcases of case 2b.

For subcases 2bi, 2biiA and 2biiB it turns out tlhat go — ho andb = dy — eo. Then,

as in expression (77), we can define the asymptotic density fungfiai) in the form

_ xq~(do—eoN
pr(x) = A!Too PN <N(go—ho)) (79)
whose moments.*(1), given by
. W™
o (1) = Jim N(grho)mn;(dreo)mzv (80)
have, according to (17) and (18), the values (foe 1)
o0 " m(do—eq)
P (1) = |:/320):| W (81)

in subcases 2bi and 2biiA, and, according to (19), the values

0) R (] R Qo+m(1—1)(do—ep)
ok _ ’ ’ % 90 q
Mo D= Z(m) F(rl’ . rj+1) |:IB(SO):| |:J/(;O):| qm(do—eo) -1 (82)

in subcase 2hiiB. Note that expressions (81) and (82) are identical to (47) and (49) of
theorem 4, respectively. Similarly, for subcases 2biiC it turns outcthat%(ko —lp) and

b = dy—ep. Then, as in expression (77), we define the asymptotic density funejitmn)

by (40), whose momenig**(2) given by (43) have, according to (20), the values given by
(51). Finally, for subcase 2biii we have the dengitj(x) defined by (40), whose moments

1 (3), given by (43), have, according to (21), the values given by (53). For the entire case

2b it happens that, according to (78) and sipée’ = N,
mo' =ty (1) = up (2) = pug (3) = oo
as in theorem 4 is also pointed out.

Let us now search for aormalized-to-unityasymptotic density of zeros. The simplest
way is to define it as

1
L norm L
p1(x) = NII—>moo Py (x) = Ivleoo —szv(X) (83)
where equation (73) has been used. Its moments given by

. 1
o =1 = lm ™  m>1 (84)
N—oo N
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have, taking into account (75), the following values

o) =1

o0 m>1 in cases 1 and 2b

0 m>1 subcase 2ai

o0 1" . (85)

W, (1) = ZF(’"i’ 0,....0r1.) | -5 m>1 subcase 2aii

m Bo

o R
> F(0.r1,0,....7;,0) {(20)} m>1 subcase 2aiii.
(m) Yo

Then expressions (34)—(38) of theorem 3 have been demonstrated. So, theorem 3 has been
entirely proved.

For cases 1 and 2b one would like to have information more useful than that expressed
by (85), keeping thenormalization to unitof the densityp;(x) given by (83). Therefore,
the spectrum of zeros has to bempressedy introducing a scaling factor. In case 1 it is
very easy to find that factor by looking at expression (75): iDis= N~¢. Then, from (75)
and (83), the density function is defined as

iy — fim pnom( Xy _ oo 1 (L
pr) = fim oy <N“)_1\/|E>nooNpN Na) (86)
whose moments are, according to (56) and (84), as
) M/(N)
ue=1 wy = lim —=2 m =1 (87)

N—00 Num+1
From (72) and (87) it is obvious that the quantitjgs have finite values. We have only to
take the values aof in the different subcases of case 1. For subcase tagy — ho; then
here it is convenient to define, according to (86), the following asymptotic density of zeros

1 X
* — H _
pr(x) = lim - py ( Ngo_ho)
whose moments are, according to (87) and (11), as follows

(O) m
(04
o) =1 W) = [,3?0)} m>=1
0

which is expression (28) of theorem 2.
For subcases 1b and 1c, it turns out that %(ko — lp), which defines the following
asymptotic density of zeros

o) = Iim Sy (2
p2\X) = N—o00 NpN N%(ko—lo)
whose moments have, according to (87) and (12), the vajup®) = 1)

(07" [0 7"

* ’ /

W@ =Y Feir i) | =% | | o m>1
(m) L Po Yo

for subcase 1b, and, according to (87) and (13), the values

m

9(0) 12

np2) =1 uma=[?m m>1

Yo

for subcase 1c. Remarks that the last two expressions coincide with expressions (29) and
(30) of theorem 2, respectively. Then this theorem has been entirely proved. O
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For case 2b the scalewrmalization-to-unityasymptotic density function of form (86)
would also have all its moments of order other than zero equal to infinite. No other scaling
factor would be able to make finite these moments uni2ss N*”%q””", but this factor
is of usefulness for reasons already discussed. Therefore, we are obliged to change the
normalization factor in this subcase. Here the discrete density of pgr(os) is normalized
so that its moments are defined by

o _ 9" =1
T L m=0
i.e. that
b = M9 o) (88)
N (mN),

when (m), and(mN), areq numbers defined by equation (45). This normalization factor
has the following relevant property: it tends 20! if m — 0 andg — 1. In particular,
this implies that

MSF(N) -1

Furthermore, for case 2b under consideration it turns out thaitiependence of.;;")

is asN"g®—YmN  This dependence suggests the analysis of the asymptotic spectrum of
zeros by means of the asymptotic density function defined by

oy i X
ot = Jim o () (89)
whose momentsy.*, are given by
+(N) m_ 1y
pit = gim P gy @7 = D (90)

N— o0 Namq(h—l)mN N— o0 (qu _ 1)Namq(h—l)mN :

Taking into account this expression together with values (17)—(21)/¢P given in
theorem 1, one observes that for subcases 2bi, 2biiA and 2biiB parametads take the
values

a=go—ho b=dy—ep

and the appropriate asymptotic density of zeros is, according to (88), (89), the function
pit(x) given by (41) in theorem 4.
For subcase 2biiC it turns out that

aZ%(ko—lo) b=d0—eo.

Then, the appropriate asymptotic density of zeros for this subcase is, according to (88),
(89), the functionp; " (x) given by (41) in theorem 4.

Finally for subcase 2biii = %(ko —1lp), b= %(fo — s0) and the appropriate asymptotic
density of zeros is, according to (88), (89), the functigi (x) given by (41) in theorem 4.

Now equation (90) and values (17)—(21) fef¥) gives, in a straightforward manner,
the momentsy,; ™ (1), w(2) and w7 (3) of the asymptotic density functions, " (x),
py F(x) and p5*(x). Indeed, the values of these quantities are given by equations (48)
for subcases 2bi and 2biiA, (50) for subcase 2biiB, (52) for subcase 2biiC and (54) for
subcase 2biii, respectively. This entirely proves theorems 2—4. d
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6. Applications

In this section we will use the theorems obtained in the two previous sections to investigate
the spectral properties of several known families of orthoggrablynomials. Let us note

that for a finite polynomial sequence (e.g. Hahn, Racah and Kravchuk polynomials), i.e.

when the degree of the polynomial is bounded by a fixed paramete(not to be confused

with the same letter previously used as the generic degree of polynomials), it is assumed
that N is sufficiently large and & n < N so that equation (61) can be fulfilled.

6.1. Theg-Hahn polynomials:i®” (g—=, N)

The g-Hahn polynomialshi‘ﬁ(q*", N) play a fundamental role in the representation theory

of the ¢g-algebrasSU,(2) and SU,(1, 1) (see [20,22,21]). They also appear in numerous
physical applications since, for example, the Clebsch—Gordan coefficients gfaigebras
SU,(2) andSU, (1, 1) are proportional to them. The theory and applications ofgtttéahn

and classical Hahn polynomials have some close parallels. So, for exajadkhn and
classical Hahn polynomials appear in the analysis of functions on the lattice of subspaces of
a finite vector space and the lattice of subsets of a finite set, respectively. These polynomials
verify the recurrence relation [3, p 59]

hePg™ Ny =[g7* — (1= Aper — Co—DIHEP (@™ N) + Buo1hP0 (g™ N) (91)
whereB, = A,_1C,, and theA and C parameters are
B (l _ aql+l1)(1 _ aﬂq””)(l _ q—N+n)
(A —aBgt(1 - apg®?)
_ag"(1—¢" (A - Bg") gV — aBg™t™)
(1 —aBg?)(1 — afq’t?)

Ay

C, =

Let us also point out that

Kny1An = Ky (92)
wherek, is the leading coefficient of the polynomial. The comparison of equations (91)
and (1) gives that

alr:um ~ O[(()O)qan — azﬂ(1+ ﬂ)qN+lq3n agenw ,3(()0)614n — aZﬂZquM
and

(b::um)z ~ 9(()0)q7n — a4,33q—Nq7n (bgen)z ~ V()(O)qsn — 0!4,34618".
Then,g, = h, =k, =1, =0forallm=0,1,... N and

do=3 ep=4 fo=7 so = 8.
This is the caselyp —eg < 0 and fo — sg < O, i.e. subcase 2ai. Therefore, equations (33)
and (34) of theorem 3 give us the moments

. B 1 R R4
Iy = Z F(ry, r1, -t r;+l)q—2£:1krk+1—zzi:ik |:q( * ﬂ)] |: - ] m_q

= B qa"(qg+qH] g2
(93)
for the asymptotic density of zerggx) defined by equation (31), and
" <1>={1 m=9 (94)
" 0 m=>1

for the corresponding asymptotic quantigy(x) given by equation (31).
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6.2. g-Kravchuk polynomial&! (g=*, N)

The matrix elements of the representatiofi§ of the U,(sl;) quantum algebra are
proportional to theg-Kravchuk polynomials (see [21, vol Ill, p 64]). According to [3,

p 76] and taking into account equation (92) the three-term recurrence relation of these
polynomials can be expressed as

kP(g*,N)=[qg7" — (11— A1 — Coo)]k? (g7, N) + B,_1k? ,(g™*, N) (95)
whereB,_1 = A,_1C,_1, and
_ A+ pgnHa- g~ Kt
" A+ pg?) (1 + pgtta)

pq KA — g™y (L + pgkt)
1+ pg?)(L+ pg=i+2m)

The comparison with (1) gives that

Co=—

num O 3n
an

0
~aiq :pq(qu_l)q.?:n asenwﬂ(())qlln 2_N_n

=Pq4q
and
0 n - n 0 n - n
(b’r;um)zweé )q6 =p3q 2q6 (bffe”)ZNJ/o( )q8 =gq 3[74qu8 )
Then,g, =h, =k, =1, =0forallm=0,1,... N and
d0=3 e0=4 fo=6 So=8.

This is the caselp —eg = —1 < 0 and fo — sg = —2 < 0, i.e. subcase 2ai. Therefore,
equation (34) of theorem 3 gives us the values
=1t =0 (96)
Pl =00 m>1

for the moments of the asymptotic density of zeyagx). Furthermore, since2; =
%(fo —s0) = —m, Qo = = krjq — 42,{;}krk+1) and M = 0, equation (33) of
theorem 3 gives us

q(pq" — 1)]'?/ [ql’v

R
< ] 1 m>0 97)
rq p q™ —

W, = Z F(ryora, ..., r;H)cfQZ [
(m)

for the moments of the spectral quantjtyx) defined by equation (31).

6.3. g-Racah polynomial®, (i.(x), o, B, v, 8). u(x) = g~ + y8q*+!

The important role that the j6symbols play in the quantum angular momentum theory
is well known (see [6]). It is known that thg-analogue of the Racah coefficients;j (6
symbols) for theg-algebral, (sl;) are proportional to thg-Racah polynomials (see [21,
vol 1ll, p 70]). From the three-term recurrence relation of these polynomials [3, p 53], as
well as equation (92), we can rewrite [3, equation 3.15.3] in the form

) Ry—1(n(x), &, B, v, 8) = Ry(u(x), 0, B, y,8) +[1 + ydg — (1 — Apo1 — Cp1)]
XRn_]_(/J/(X), @, /87 Vs (S) + Bn—an—Z(M(x)’ a, :3’ Vs 8) (98)
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whereB,_1 = A,_1C,_1, and
(L —ag"™ A —apg'™) (1 - Bsg"") (L — yq'™)
- (1— afqi*2) (1 — apg?+2)
_91=9"06 —aq") A~ Bg")(y — apq")
(1 - aBq®)(1 — afq**?)
The comparison with (1) gives that

Ay

Ca

"M~ —aPq% = qaB(a+y +af + B+ aBS +ay + 8y + Byd)g®
agen N _’3(()0)q4n _ a2ﬂ2q4n
and
(bgun1)2 ~ 980)61&; — qa4,348)/618n (bgen)Z ~ yO(O)an — 054,34q8n.
Then,g, = h, =k, =1,=0forallm=0,1,...N and
do=3 eg=4 fo=28 so = 8.

This is the caséy—ep = —1 < 0 and fo—so = 0, i.e. subcase 2aiii. Therefore, equation (16)
of theorem 3 yield the moments

1 m
I =13 F0,r,0,....r,, Olgsy]* m > (99)
(m)

for the asymptotic densities of zerpg(x) defined by equation (31).

6.4. g-Askey and Wilson polynomiajs, (x, a, b, ¢, d)

According to [3, p 51] and equation (92), the three-term recurrence relation forAtskey
and Wilson polynomials can be rewritten as
xpn-1(x,a,b,c,d) = py(x,a,b,c,d) + 3[a+a " — (Ay_1 + Co_D)]pu-1(x.a, b, c, d)
+Bn—lpn—2(xv a, ba C’ d) (100)
whereB,_; = A,_1C,_1, and
_a- abcdq™")(1 — abg™) (1 — acq™)(1 — adq™)
N a(l— abcdqg?)(1 — abcdg—112)
a(l—beqg ") (L — bdg ") (1 — cdg ") (1 — ¢")
(1 — abcdq=2t2)(1 — abcdq—12) '
The comparison with (1) gives

Ay

C, =

a™m ~ —occ()o)qgn = gabced(abe + abd + acd + bed + g(a + b+ ¢ + d))g™

n

aden ~ —,BSO)Q4” — 2a2122d2 g™
and

(b’r;um)z N QSO)an _ a4b4c4d4q8n (bgen)z N J/(§O)qnn _ a4b4c4d4q8n_
Then,g,, = h, =k, =1, =0forallm=0,1,... N and

do=3 =14 fo=28 so = 8.
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This is the caséy—ep = —1 < 0 and fo—so = 0, i.e. subcase 2aiii. Therefore, equation (38)
of theorem 3 gives us the moments

m
1O =13F©r,0...,5,0 m> (101)
(m)

for the asymptotic density of zerqs (x) defined by equation (31).

6.5. Al Salam-Carlitz polynomialg, (x) and v} (x)

In dealing with theg-harmonic oscillator, Askey and Suslov [16] have introducedd¢he
polynomials

;x(/x 1

uh(x) =g~ 7 UM (x).

whereU, *(x) are the so-called Al Salam—Carlitz polynomials. These polynomials satisfy
the recurrence relation [16]

xup_ 1 (1) = ) (0) + (1= wg" " uy_y (1) + 1g" AL = ¢" Huy_,(x) (102)
which is of the type (1) with the coefficients

a}r:um a(O)qn =(1- 'u)q—lqn aSen =1
and
(bzum)Z ~ 060)‘]2;1 — Mq—lq2n (bden)z — V(O)qmn — l

Then,g, =h, =k, =1, =0forallm=0,1,... N and
d():l e():O fo=2 S0=0.

This is the cas@ly — eg = 1 and fo — so = 2, i.e. subcase 2biiB. Therefore, equations (49)
and (50) of theorem 4 give us the moments

m=20
(1) = : f22 103
Hon (D) ZF(riv”l»--~7"j{+1)[1_l/v]RMRq,,i]7_l m>1 (103)
(m)
and
m=20
ot (D) = Z F(ry,ra, ... J+1)[1 /L]R uRq m>1 (104)

(m)

(where2, = Z,ﬂzl kri .+ 42,{;; kri+1 — mt) corresponding to the asymptotic quantities
pi*(x) and pi T (x), respectively.

It has been encountered [15] that another class of the Al Salam—Carlitz polynomials, to
be denoted by (x), is related also to the-oscillator. So, it seems natural to search for
its distribution of zeros. These polynomials satisfy the relation [15]

xXup 1 (0) = v () + (g + g "2y () + g " 3T = Dy (0. (105)
Therefore,dy = —1, ¢g = 0, fo = —1, s = 0. This corresponds to subcase 2ai. Then,
equation (34) of theorem 3 gives us the moments

=]t =0 (106)
FalP =010 m>1
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for the asymptotic densityp(x). Furthermore, since; = —%(R’ + m), Q =
—( i krf, — 231"V kriy1) and M = 0, equation (33) of theorem 3 gives

—m

q

per (107)

W= Fir....rlDa”%g g + w]¥ uk
(m)

for the moments of the normalized—%-spectral quantityo; (x) defined by equation (31).

6.6. The littleg-Jacobi polynomial, (x, a, b)

The little g-Jacobi polynomials, (x, a, b) play a fundamental role (see e.g. [20]) in the
representation theory of thg-algebral, (si>) because they are the matrix elements of the
representationg’ (see [21, vol Ill, p 51]). They satisfy the three-term recurrence relation
[3, p 59]

pn(xv a, b) = [)C + An—l + Cn—l]pn—l(x, a, b) + Bn—an—Z(% a, b) (108)
where A and C parameters are given by

_ qn(l _ aqlJrn)(l _ abq1+n)
© (1 — abq2) (1 — abg?+?")
o a9"(1—q")(1—bg"

" (11— abg?)(1— abgit?)

Ay

and B, = A,_1C,. This relation is of the type (1) with the coefficients
a}r:um _ O[(()0)6]3n _ —ab(l+a)q3" asen: ﬁ(()O)q4n _ a4b4q4”
and
(B2 = GéO)an — a®p2g® (b2 = Vc)(o)qsn — ga*b*q®.
Then,g, =h, =k, =1, =0forallm=0,1,..., N and

d0=3 €0=4 fo=6 So=8.

This is the caselp —eg = —1 < 0 and fo — sg = —2 < 0, i.e. subcase 2ai. Therefore,
equation (34) of theorem 3 gives us the moments
‘=1t m=0 (109)
,bLm - O m 2 1
for the asymptotic density of zergs(x). Furthermore, sinc&; = %(fo — s0) = —m,

Qo= —(X]_1krf,, —AY ] Tkrii1) and M = 0, equation (33) of theorem 3 gives us

1+al®[-11% 1
= SNCFG g = = 110
o (%2 (T2 1) [ a } [aq} (" — 1)b" (110)

which are the moments of asymptotic spectral quantity).
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6.7. The bigg-Jacobi polynomialsP, (x, a, b, ¢)

The big g-Jacobi polynomialsP, (x, a, b, c) are defined in [3, p 57]. By use of the
parameters

_ (1—ag"") (A —abg"") (1 — cq™")
1- abql+2")(l _ abq2+2”)
acq*" (1 - g") (1~ bg") (1 ")
(1 — abg?")(1 — abglt2)
we can rewrite its three-term recurrence relation [3, p 59] in the form

Ay

Cp=—

Py(x,a,b,c) =[x +1—A, 1~ Cpa]Pr1(x,a,b,¢) + B,1P,2(x,a,b, ) (111)
whereB, = A,_1C,. The comparison with (1) gives

a]r:um ~ a(()O)q3n — _qab(b + l)(a + c)q3n agenN ﬂéo)q4n — _a2b2q4n
and

(bgum)Z N 9(()0)q7n _ a4b3cqq7” (bgen)Z N yéo)qen _ a4b4q—1q8n.

Then,g, =h, =k, =1, =0forallm=0,1,..., N and
d0=3 e0=4 f0=7 So=8.

This is the casely —eg < 0 and fo — so < O, i.e. subcase 2ai. Therefore, equations (33)
and (34) of theorem 3 give us the moments

’ ’ ’ =3 ke 23k
My = E F(ry,r1, ..., rj, rj+l)q Dimkria =235
(m)

b+D@a+o)1% reqr 1
- - — 112
LT L @12
for the asymptotic density of zerggx) defined by equation (31), and
Hn ) = 0 m>1

for the corresponding asymptotic quantgy(x) given by equation (31).

6.8. Theg-dual Hahn polynomials in the lattice(s) = [s],[s + 1],

In this section we provide the asymptotic behaviour of the moments of zeros gfdhal

Hahn polynomialsW ) (x(s), a, b),. These polynomials are connected with the Clebsh—

Gordan of theg-algebrasSU, (2) and SU, (1, 1) [24]. Using the above formulae we find

the following asymptotic values of the moment§™) (m > 1)

WM Zmﬁ (rici+ri+ri =1 g3k g?etabm ¢
" (ri-a = Dbt [q7% = 1]"=2R (g —q 12" ¢ -1

8m(N—r1)

(m) i=1

Using the normalized density of zeros

m

pi T(x) = lim ™)

N gV 1pzv(xq



Distribution of zeros of general-polynomials 6767
then, the corresponding moments are given by the expression forl
ngt@ =1

A+l / Y 5m—3R 2(ct+a—b)m m_ 1
“:fgﬂl)zzmn(rlil—i_rl—i_rl 7 ) 26]- 2R i Ty2m qA :
(rica = Dlrlrt [q2 = 1]" 2R (g —qg H*" ¢*" -1

(m) i=1
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